初中数学的基础知识,主要是概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法。在新课程标准总目标中特别提出学生要“获得适应未来社会生活和继续学习所必需的数学基本知识和技能以及基本的数学思想方法”。掌握好数学思想和方法,培养我们的创新意识是全面提高思维品质的必要条件。
掌握数学思想方法可以使数学更容易理解和记忆,更重要的是领会数学思想方法是通向成功的“光明之路”,如果把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾驭数学知识,就能培养我们的数学能力,使数学学习就较容易。数学思想方法的学习可以使我们有意识、自觉地将数学知识转化为数学能力,最终通过自身的学习转化为创造性能力。因此,加强数学思想方法的学习,是培养我们分析问题和解决问题的能力的重要方法。
[图片0]
2数学思维方法一
实践证明,培养初中生的数学思维方法,有效地激发了学生的学习兴趣,充分调动了学生学习积极性和主动性,能使学生的认知结构不断地完善和发展,使学生将已有的思维方法运用在学习新知识的过程中,能够把复杂问题转化为简单问题来解决,提高学习效益,提高学生分析问题和解决问题的能力。目前,数形结合思维、分类讨论思维、方程与函数思维是各地试卷考查的重点,因此,也应注重初中生数学思维方法的培养,考查学生的数学思维方法是考查学生能力的必由之路。
从教育的角度来看,数学思维方法比数学知识更为重要,这是因为:数学知识是定型的,静态的,而思维方法则是发展的,动态的,知识的记忆是暂时的,思维方法的掌握是永久的,知识只能使学生受益于一时,思维方法将使学生受益于终生。增强数学思维方法的培养比知识的传授更为重要,数学思维方法的掌握对任何实际问题的解决都是有利的。因此,数学教学必须重视数学思维方法的教学。主要的初中数学思维方法:初中数学中蕴含的数学思维方法很多,最基本最主要的有:转化的思维方法,数形结合的思维方法,分类讨论的思维方法,函数与方程的思维方法等。
[图片1]
3数学思维方法二
函数与方程的思维:函数与方程的思维是中学数学最基本的思维。所谓函数的思维是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。而所谓方程的思维是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。
数形结合的思维:数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。因此数形结合的思维对问题的解决有举足轻重的作用。
分类讨论的思维:分类讨论的思维之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。原因四是实际问题中常常需要分类讨论各种可能性。解决分类讨论问题的关键是化整为零,在局部讨论降低难度。常见的类型:类型 1 :由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;
[图片2]
4数学思维方法三
数学新题型解题方法:数学探索题,所谓探索题就是从问题给定的题设条件中探究其相应的结论并加以证明,或从给定的题目要求中探究相应的必需具备的条件、解决问题的途径。条件探索题:解答策略之一是将题设和结论视为已知,同时推理,在演绎的过程中寻找出相应所需的条件。结论探索题:通常指结论不确定不,或结论需通过类比、引申、推广,或给出特例需通过归纳得出一般结论。可以先猜测再去证明;也可以寻求具体情况下的结论再证明;或直接演绎推证。
规律探索题:实际就是探索多种解决问题的途径,制定多种解题的策略。活动型探索题:让学生参与一定的社会实践,在课内和课外的活动中,通过探究完成问题解决。推广型探索题:将一个简单的问题,加以推广,可产生新的结论,在初中教学中常见。如平行四边形的判定,就可以产生许多新的推广,一方面是自身的推广,一方面可以延伸到菱形和正方形中。探索是数学的生命线,解探索题是一种富有创造性的思维活动,一种数学形式的探索绝不是单一的思维方式的结果,而是多种思维方式的联系和渗透,这样可使学生在学习数学的过程中敢于质疑、提问、反思、推广。通过探索去经历数学发现、数学探究、数学创造的过程,体会创造带来的快乐。
以上就是数学中的思维方法的相关建议,希望能帮助到您!