数学思维比数学计算更重要:数学的证明依靠严密的逻辑推理,一经证明就永远正确,所以,数学证明是绝对的。相对而言,科学的证明则依赖于观察、实验数据和理解力,科学理论的证明难以达到数学定理证明所具有的绝对程度,只能提出近似于真理的概念。因此,在思维严密的数学家眼里,物理学、化学、生物学、天文学等自然科学都是经验科学。林家翘先生说,应用数学家要将数学的严密和精确引入经验学科,将这些学科中的实验问题归结或表示为能够用运算手段处理的数学问题,从而促进经验科学的发展。
过去的经验告诉我们,所有的科学问题在本质上都是简单而有序的。物理学所有的定理都可以用数学公式在一张纸上表示出来,而与此同时,人类的智慧又坚持用简单的概念阐明科学的基本问题,这样做,数学就是一个基本的方法。
应用数学是利用数学的方法来发展经验科学的学科。应用数学始于经验性事实,止于对经验性事实进行规律性预测,这些规律还必须被其它的实验数据所证实。同时,用数学理论来发展经验科学往往又会向数学提出深刻的挑战,并对纯数学的研究启示新的方向。
[图片0]
2数学思维方法一
脑力激荡法:脑力激荡法(Brainstorming):脑力激荡法是最为人所熟悉的创意思维策略,该方法法是由Osborn早于1937年所倡导,此法强调集体思考的方法,着重互相激发思考,鼓励参加者于指定时间内,构想出大量的意念,并从中引发新颖的构思。脑力激荡法虽然主要以团体方式进行,但也可于个人思考问题和探索解决方法时,运用此法激发思考。该法的基本原理是:只专心提出构想而不加以评价;不局限思考的空间,鼓励想出越多主意越好。此后的改良式脑力激荡法是指运用脑力激荡法的精神或原则,在团体中激发参加者的创意。
三三两两讨论法:此法可归纳为每两人或三人自由成组,在三分钟中限时内,就讨论的主题,互相交流意见及分享。三分钟后,再回到团体中作汇报。
六六讨论法:六六讨论法是以脑力激荡法作基础的团体式讨论法。方法是将大团体分为六人一组,只进行六分钟的小组讨论,每人一分钟。然后再回到大团体中分享及做最终的评估。
[图片1]
3数学思维方法二
启发孩子的数学思维:3-12岁是孩子思维能力发展的重要阶段,更深入的说,也是孩子智力发展的重要阶段。所以,这一时期如果能够让孩子接受到数学思维训练,会让初中或者高中的学习都变得较为轻松。并且,暑假时间充足,可以有针对性的、集中给孩子进行思维训练,这样在下一个学年开学的时候,孩子的学习能力就会有一个质的提升。学习起来也就不觉得困难了。
变被动学习为主动学习:如果孩子的思维发展不好,那么面对数学题,他们只会觉得一团乱麻,难以明白其中的原理。而当孩子的思维能力得到提升以后,在他们看到题目时,就能发现其中设计的巧妙和解题的思路所在。这会让孩子对数学产生极大的兴趣,把它当做一个挑战,当问题解答成功时,会有很大的成就感。
补缺补漏、弯道超越:暑期对孩子的学习来说是一个很好的缓冲期。这一阶段家长要注意的,就是将孩子以往存在的数学学习难点给解决掉,并且再让孩子的数学能力有进一步的提升,能更好地迎接下一年级更难的数学知识。而家长会说,如果单就书本知识学习的话,传统的补习班不也行吗?其实不然,一方面是因为题海战术治标不治本,孩子会了这一题,但是却不会做下一题,并且它对孩子的思维能力发展并没有好处,反而很容易让孩子形成定势思维。而到了下一年级,孩子在数学学习上的领悟能力依旧很低,慢慢的成绩又会落下来。
[图片2]
4数学思维方法三
激发人的好奇心和求知欲。这是培养创造性思维能力的主要环节。影响人的创造力的强弱,起码有三种因素:一是创新意识,即创新的意图、愿望和动机;二是创造思维能力;三是各种创造方法和解题策略的掌握。激发好奇心和求知欲是培养创新意识、提高创造思维能力和掌握创造方法与策略的推动力。实验研究表明,一个好奇心强、求知欲旺盛的人,往往勤奋自信,善于钻研,勇于创新。因此,有人说:“好奇心是学者的第一美德。”
培养发散思维和聚合思维。这是发展创造性思维能力的重要方面。在人的创造活动中,既要重视聚合思维的培养,更要重视发散思维的培养。当前,各级学校比较重视求同思维的培养而忽视求异思维的训练。如有的教师往往按照一张标准答卷给分,而学生也往往按照固有的一个答案回答问题。这样,无形之中使学生形成了一个固定的思维模式,严重影响了学生的观察力、好奇心、想象力及主动性的发展。通过这种办法培养出来的只能是知识积累型的学生。
培养直觉思维和逻辑思维。这是培养创造性思维不可缺少的环节。所谓直觉思维,是指未经逐步分析而迅速地对解决问题的途径和答案做出合理反映的思维。如猜测、预感、设想、顿悟等。着名科学家爱因斯坦就具有极强的直觉能力。他非常重视实验。大学时,他用大部分时间在实验室里操作,迷恋于获得的直接经验。
以上就是数学思维方法对自然科学的作用的相关建议,希望能帮助到您!