如何做数学几何体方法?学习几何并不像有的同学所描绘的那样:“几何,几何,尖尖角角,又不好看,又不好学”。其实几何是最具有形象性的一门科学,只要思想上重视,又注重学习方法,是完全可以学好的。下面小编给大家带来做数学几何体方法。
[图片0]
2概念
要学好概念。首先弄清概念的三个方面:①定义——对概念的判断;②图形——对定义的直观形象描绘;③表达方法——对定义本质属性的反映。注意概念间的联系和区别,在理解的基础上记住公理、定理、法则、性质…… 要进行直观思维。即根据书上的图形,动手动脑用硬纸板、竹片等做些图形,详细进行观察分析,既可帮助我们加深对书本定理、性质的理解,进行直观思维,又可逐步培养观察力。
要富于想像。有的问题既要凭借图形,又要进行抽象思维。比如,几何中的“点”没有大小,只有位置。现实生活中的点和实际画出来的点就有大小。所以说,几何中的“点”只存在于大脑思维中。“直线”也是如此,直线可以无限延伸,谁能把直线画到火星、再画到银河系、再画到广阔的宇宙中去呢?直线也只存在于人们的大脑思维中。 要学好几何语言。几何语言又分为文字语言和符号语言,几何语言总是和图形相联系。
[图片1]
3读题
解几何题,一定要读好题,反映的无非两大点:一个是角度,一个是长度,结合起来就是个立体图形。所以读好题,才能把握好这个立体图形,在脑中要能形象化出来图形才行!常见的方法就是向量法,选基底,标注上坐标,再利用书中的相关公式和性质求解,这里不再赘述!
向量法对于复杂的图形不仅操作麻烦,运算量大还很容易出错,特别是想快速节约时间,考高分的同学不建议利用向量法!而几何法却相反准确度高,快速有效!常见的方法是利用点,线,面之间的垂直,平行等关系进行求解。可以利用添加辅助线,构造图形法,参考下图,很容易知道该图形是从一个标准的长方体(看成是两个正方体合起来)中抽出来的,则很容易看出图中要求的距离就是线段AM的长度,从而口算得出为2再开根号。
[图片2]
4逻辑
逐渐提高逻辑论证能力:立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(“推出法”)形式写出。
学习立体几何的一个捷径就是认真学习课本中定理的证明,尤其是一些很关键的定理的证明。定理的内容都很简单,就是线与线,线与面,面与面之间的联系的阐述。但定理的证明在初学的时候一般都很复杂,甚至很抽象。深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。
[图片3]
5总结
立体几何解题过程中,常有显著的规律性。例如:求角先定平面角、三角形去解决,正余弦定理、三角定义常用,若是余弦值为负值,异面、线面取锐角。对距离可归纳为:距离多是垂线段,放到三角形中去计算,经常用正余弦定理、勾股定理,若是垂线难做出,用等积等高来转换,如能建立空间坐标系可用空间向量来解决。只有不断总结,才能不断高。
还要注重规范训练,高考中反映的这方面的不足十分严重,不少考生对作、证、求三个环节交待不清,表达不够规范、严谨,因果联系不充分,图形中各元素联系理解错误,符号语言不会运用等。这就要求我们在平时养成良好的答题习惯,具体来讲就是按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的规范性在数学的每一部分考试中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。对于即将参加高考的同学来说,考试的每一分都是重要的,在“按步给分”的原则下,以平时的每一道题开始培养这种规范性的好处是很显著的,而且很多情况下,本来很难答出来的题,一步步写下来,思维也逐渐打开了。
以上就是如何做数学几何体方法的相关建议,希望能帮助到您.