连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值2、利用恒等变形消去零因子(针对于0/0型),利用无穷大与无穷小的关系求极限,利用无穷小的性质求极限,利用等价无穷小替换求极限,可以将原式化简计算。利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限7、利用两个重要极限公式求极限
利用左、右极限求极限,(常是针对求在一个间断点处的极限值)9、洛必达法则求极限其中,最常用的方法是洛必达法则,等价无穷小代换,两个重要极限公式。在做题时,如果是分子或分母的一个因子部分,如果在某一过程中,可以得出一个不为0的常数值时,我们常用数值直接代替,进行化简。另外,也可以用等价无穷小代换进行化简,化简之后再考虑用洛必达法则。
2求极限的方法一
牢记极限的知识体系:这一点对学习任何知识都适用。大家只有掌握了极限的知识体系,才能清楚极限包含的内容以及可能的重难点。极限这章包括了三个部分:首先是极限的概念以及无穷小和无穷大的介绍;然后是极限的基本性质;最后是极限的计算方法。大家可以把这个知识体系与考纲做个对照,就会发现极限的计算是重点。在清楚了重点后,复习极限时就可以做到详略得当,有的放矢。
理解极限知识点的内容:在牢记知识体系之后,大家要做的自然是理解知识点。首先是极限的概念以及无穷小和无穷大的介绍。针对极限的概念,大家没必要像定积分定义那样记的那么准。历年考研几乎没考过用定义来求极限。所以,大家要做的是理解这个概念,并能用自己的话来表述。特别是教材或者参考书上针对概念的注解是大家需要关注的。至于无穷小和无穷大,关键也是要理解内涵,并且与极限联系。然后是极限的基本性质。
[图片0]
3求极限的方法二
洛必达法则:(大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!
当然还要注意分母不能为0。洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。
4求极限的方法三
求导,边上下限积分求导,当然就能得到结果了,这不是很容易么?但是!有2个问题要注意!问题1:积分函数能否求导?题目没说积分可以导的话,直接求导的话是错误的!!!!问题2:被积分函数中既含有t又含有x的情况下如何解决? 解决1的方法:就是方法2微分中值定理!微分中值定理是函数与积分的联系!更重要的是他能去掉积分符号!解决2的方法:当x与t的函数是相互乘的关系的话,把x看做常数提出来,再求导数!!当x与t是除的关系或者是加减的关系,就要换元了!(换元的时候积分上下限也要变化!)
求的是数列极限的问题时候:夹逼或者分项求和定积分都不可以的时候,就考虑x趋近的时候函数值,数列极限也满足这个极限的,当所求的极限是递推数列的时候:首先:判断数列极限存在极限的方法是否用的单调有界的定理。判断单调性不能用导数定义!!数列是离散的,只能用前后项的比较(前后项相除相减),数列极限是否有界可以使用归纳法最后对xn与xn+1两边同时求极限,就能出结果了!
以上是高等数学求极限方法的相关建议,希望能帮助到您。