数学思想方法是数学基础知识、基本技能的本质体现,正确运用数学思想方法是在中考数学中取得好成绩的关键。今天小编整理了一些数学思想方法的渗透的技巧,希望对大家有帮助。
所谓数学思想,是指人们对数学理论与内容的本质认识,它直接支配着数学的实践活动。所谓数学方法, 是指某一数学活动过程的途径、程序、手段,它具有过程性、层次性和可操作性等特点。数学思想是数学方法 的灵魂,数学方法是数学思想的表现形式和得以实现的手段,因此,人们把它们称为数学思想方法。
数形结合思想是充分利用“形”把一定的数量关系形象地表示出来。即通过作一些如线段图、树形图、长 方形面积图或集合图来帮助学生正确理解数量关系,使问题简明直观。 例2 一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就这样每次都喝了上一次剩下的一半。甲 五次一共喝了多少牛奶? 附图{图} 此题若把五次所喝的牛奶加起来,即1/2+1/4+1/8+1/16+1/32就为所求,但这不是最好的解题策 略。我们先画一个正方形,并假设它的面积为单位“1”,由图可知,1-1/32就为所求, 这里不但向学生渗 透了数形结合思想,还向学生渗透了类比的思想。
2技巧一
1.加强新课标的学习
加强学习高中新课标,深入研究教材,排查“盲区”要到位,解决学生知识衔接。教师应全面了解教材,明确各知识点。全面掌握新课程的知识体系,提高课堂教学针对性。
2.缩写并使用衔接教材
初、高中数学教材中有许多知识点需要做好衔接工作,如函数的概念、映射与对应等。其中有的是高中的新内容,有的是初中的旧知识,教学中不但要注意对旧知识的复习,而且更应该讲清新旧知识的联系和区别,适当渗透转化和类比的数学思想和方法,帮助学生温故知新,实现由未知向已知的转化。从学生实际出发,以“低起点,小步子,勤反馈,重矫正”的原则,编制适量习题,抚平初、高中数学习题的台阶。使学生由浅入深、循序渐进地掌握数学知识。
3.加强高初中教师的学术交流
为高、初中教师提供相互听课、评课、座谈的机会。加强学法指导的教学,并时刻渗透到教学的全过程中。请初中参加过课改的老师就初中课改情况及初中学法特点进行专题讲座。
[图片0]
3技巧二
转化思想方法
转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。
类比思想方法
类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
4技巧三
第一种:分类讨论思想。这种思想大家想必不陌生。由于条件不明确,往往会出现让我们讨论的地方。此时,大家的失分点就会集中到这里。当然,掌握了这种方法,那么得分就不困难了
第二种:转化思想。当我们面对生疏的问题时,这是解决新问题的重要方法。化繁为简,化难为易,从而解决问题。这是突破一些难题的核心。
第三种:方程思想。方程是初中数学的重要内容,它内容丰富,涉及面广,综合性强,因而用方程思想解数学题有广泛的应用。分挖掘条件和结论中隐含的数量关系,借助图形的直观性质,寻求已知量与未知量之间的等量关系,从而列出方程(组),然后解出方程,进而使几何题得到解决。
第四种:数形结合法。所谓的数形结合法就是在研究问题时把数和形结合考虑或者把问题的数量关系转化为图形的性质,或者把图形的性质转化为数量关系,从而使复杂的问题简单化,抽象的问题形象化、具体化。