勤学思培训网RRHQXD
  • 终于懂得离散数学方法

    1离散数学方法

    离散数学的定义及其在各学科领域的重要作用。离散数学(Discrete mathematics)是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。今天,就给大家带来离散数学方法。

    离散数学是建立在大量定义上面的逻辑推理学科。因而对概念的理解是我们学习这门学科的核心。在这些概念的基础上,特别要注意概念之间的联系,而描述这些联系的实体则是大量的定理和性质。 在考试中的一部分内容就是考察大家对定义和定理的识记、理解和运用。如2002年上海交通大学的试题,问什么是相容关系。如果知道的话,很容易得分;如果不清楚,那么无论如何也得不到分数的。这类型题目往往因其难度低而在复习中被忽视。实际上这是一种相当错误的认识,在研究生入学考试的专业课试题中,经常出现直接考查对某知识点的识记的题目。对于这种题目,考生应该能够准确、全面、完整地再现此知识点。任何的模糊和遗漏,都会造成极为可惜的失分。我们建议读者,在复习的时候,对重要知识的记忆,务必以上面提到的“准确、全面、完整”为标准来要求自己,不能达到,就说明还不过关,还要下工夫。关于这一点,在后续章节中我们仍然会强调,使之贯穿于整个离散数学的复习过程中。 离散数学的定义主要分布在集合论的关系和函数部分,还有代数系统的群、环、域、格和布尔代数中。一定要很好地识记和理解。

    [图片0]

    2特点

    1、知识点集中,概念和定理多:《离散数学》是建立在大量概念之上的逻辑推理学科,概念的理解是我们学习这门学科的核心。不管哪本离散数学教材,都会在每一章节列出若干定义和定理,接着就是这些定义定理的直接应用。掌握、理解和运用这些概念和定理是学好这门课的关键。要特别注意概念之间的联系,而描述这些联系的则是定理和性质。

    2、方法性强:离散数学的特点是抽象思维能力的要求较高。通过对它的学习,能大大提高我们本身的逻辑推理能力、抽象思维能力和形式化思维能力,从而今后在学习任何一门计算机科学的专业主干课程时,都不会遇上任何思维理解上的困难。《离 散数学》的证明题多,不同的题型会需要不同的证明方法(如直接证明法、反证法、归纳法、构造性证明法),同一个题也可能有几种方法。但是《离散数学》证明 题的方法性是很强的,如果知道一道题用什么方法讲明,则很容易可以证出来,否则就会事倍功半。因此在平时的学习中,要勤于思考,对于同一个问题,尽可能多 探讨几种证明方法,从而学会熟练运用这些证明方法。同时要善于总结,演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。

    3目的

    一般来说,离散数学内容广泛且高度抽象,可以说是一门既难教又难学的课程,这无疑给教师的教学和学生的学习带来了一定的难度。一方面,离散数学不仅 是为专业服务的基本理论,而且通过该课程可以培养学生的抽象思维和缜密概括的能力,但其概念多,理论性强,高度抽象性的特点却令许多学生望而生畏。学生在 学习这门课程时,往往看不到离散数学在计算机科学中的具体应用,因而放松对离散数学的学习,失去学习的兴趣。

    离散数学的生命力在于其深刻的理论和广泛的应用。其实,深刻的理论和广泛的应用是相辅相成的。学生之所以对离散数学的学习兴趣不高,除了离散数学本身理论性 强、比较抽象以外,还有一个原因就是对于这些理论方面的知识,学生在学习过程中并不会切实地感受到学好它的作用和成效,因此只把应付考试作为学习这门课程 的目的。作为老师,我们在教学之初就应该向学生们指明,学习离散数学的目的在于培养学生的抽象推理、逻辑思维和归纳构造等能力,提高学生利用数学方法解决问题的技能,以及为后续课程作必要的准备,为学生的进一步学习奠定计算机数学的基础。它所涉及的概念、方法和理论,大量地应用在数字电路、编译原理、数据结构、操作系统、数据库、算法等领域。

    4方法

    学习离散数学有两项最基本的任务:其一是通过学习离散数学,使学生了解和掌握在后续课程中要直接用到的一些数学概念和基本原理,掌握计算机中常用的科学论证方法,为后续课程的学习奠定一个良好的数学基础;其二是在离散数学的学习过程中,培训自学能力、抽象思维能力和逻辑推理能力,以提高专业理论水平。因此学习离散数学对于计算机、通信等专业后续课程的学习和今后从事计算机科学等工作是至关重要的。

    但是由于离散数学的离散性、知识的分散性和处理问题的特殊性,使部分学生在刚刚接触离散数学时,对其中的一些概念和处理问题的方法往往感到困惑,特别是在做证明题时感到无从下手,找不到正确的解题思路。因此,对离散数学的学习方法给予适当的指导和对学习过程中遇到的一些问题分析是十分必要的。